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SEPARATION SCIENCE AND TECHNOLOGY, 22(4), pp. 1269-1280, 1987 

Retention and Peak Width in Field-Flow Fractionation with 
Wall Effects 

C .  VAN DEN BROECK and D. MAES 
LlMBURGS UNIVERSITAIR CENTRUM 
B-3610 DIEPENBEEK, BELGIUM 

Abstract 

Retention and peak width are calculated in field-flow fractionation with 
boundary absorption. Results obtained by other authors are covered as particular 
cases of our more general treatment. 

INTRODUCTION 

Field-flow fractionation is a method in which particles are separated in 
a nonuniform flow under the influence of a field perpendicular to the 
flow (2-9). In most cases, the flow has a parabolic velocity profile. The 
field can be produced by gravitational or centrifugal force, by a thermal 
or electrical gradient. Under the influence of this field, different types of 
particles will move to regions of the flow with different flow velocity, 
leading to different peaks in the chromatographic experiment. Apart 
from calculating theoretically the positions of these peaks in terms of the 
characteristics of the particles (e.g., mobility, radius, charge, etc.), it is also 
important to evaluate the peak widths. This allows one to discuss the 
separating power of the set-up. The explanation for the width of the peaks 
is to be found in the stochastic nature of the particles’ motion: particles, 
even though perfectly identical, will not follow the same trajectory. 
Although the resulting dispersion is a nuisance to the chromatographic 
experiment per se, it reflects properties of the stochastic motion of the 
particle and can therefore be used, in combination with appropriate 
theoretical results, to measure dynamic properties of this motion (e.g., 
diffusion constant, reaction rates, etc.). In this context, we mention the 
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1270 VAN DEN BROECK AND MAES 

work of Westhaver (ZO), Taylor (ZZ), Aris (12), Giddings (13-Z5), and 
Mysels (16). 

In many cases the suspended particles can undergo adsorption in a 
thin retentive layer at the boundaries of the tube through which the 
carrier fluid is flowing. Results were obtained for this case by Golay (17) 
in the absence of a field and for infinitely fast equilibration. Surface 
transport and finite equilibration times were considered in Refs. 18 and 
19-21, respectively; see also Ref. 22. 

The purpose of this paper is to calculate the retention and peak width 
in the presence of both boundary adsorption (with finite equilibration 
times) and an external field. All the above cited results are covered as 
particular cases. 

GENERAL RESULT FOR RETENTION AND PEAK WIDTH 

The general results, which we will apply to more specific cases in the 
next section, can be obtained as a limit of a discrete model which was 
discussed by one of the authors (23). In this model (see Fig. 1) one 
considers a system of N layers or channels. The layers are planar and 
parallel to the x-z plane. In each layer i, i = 1,2,  . . . , N, fluid is flowing 
in the x direction with velocity up Particles suspended in the fluid are 
carried along with the local fluid velocity. The transition rates for going 
from layer i to layer i + 1 and i - 1 are denoted by ki+ and k;, respectively 
(see Fig. 1). We consider here reflecting boundary conditions, so that 
k;  = k i  = 0. Moreover, all other k,?s are assumed to be nonzero, i.e., the 
random walk is irreducible. 

Frc. 1. Kinetic model of field-flow fractionation system. 
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FIELD-FLOW FRACTIONATION 1271 

The steady-state distribution pi* of particles undergoing the above 
described random walk over the layers i, i = 1, . . . , N, is determined by 
the detailed balance conditions k,+p,* = K,Tl p z , ,  leading to 

with N a normalization constant. 
It can be shown (23) that the distribution of the particles (i.e., the 

concentration or probability profile) along the flow direction x is 
asymptotic for r - m ,  a Gaussian distribution with average position of its 
peak (x(r)) and peak width (sx'(r)) (or dispersion) given as 

with 

and 

N 
ii* = 1 uipi* 

i = l  
(4) 

K* is sometimes called the effective longitudinal diffusion coefficient. 
We will now take the limit in which the discrete parameter i goes over 

into a continuous parametery E [ O J ]  except for one or two discrete states 
i = 1 and i = N, which are to model the retentive boundary layers. The 
details of this limit are given in the Appendix. 

Let us first consider the case in which only the lower state i = 1 is kept 
as a discrete state. The flow profile then consists of a continuum u = u(y) 
and the velocity u1 = 0 in the boundary layer. The particles occupy a 
position y in the continuum with a probability density p * ( y )  while the 
probability for sitting in the retentive boundary layer will be denoted by 
Pabs. Obviously, one has 

l L p * ( y ) d y  + P a b s  = 1 ( 6 )  
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1272 VAN DEN BROECK AND MAES 

The random walk over the states i = 2, . . . , N becomes a diffusive 
process (possibly with drift) with diffusion coefficient 001). 

By splitting off the term i = 1 in the summations appearing in Eqs. (4) 
and (5) and taking the continuum limit for the remaining layers, we 
obtain 

where we have written kdes fork: (kdes is the desorption rate, i.e., k& is the 
average time spent in the retentive layer per visit). 

We will now express U* and K* in terms of the stationary probability 
profile p(y)  in the absence of a retentive layer in order to make the effect of 
these layers more apparent. This is possible because the form of the 
steady-state probability profile is not modified by the presence of this 
layer, i.e.,p*b) is proportional t o p e ) .  Let us call k the ratio of the sample 
in the retentive layer to the sample in the mobile continuum phase: 

Since 

we obtain by combining Eqs. (6), (9), and (10): 

and 

Inserting these results in Eqs. (7) and (8), we obtain 
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FIELD-FLOW FRACTIONATION 1273 

Proceeding in the same way for the case where both the upper and 
lower states i = 1 and i = N play the role of retentive layers (with identical 
properties k:  = ki; = kdes and k; = k i - ,  = kahs), we obtain 

Equations (13)-(16) are the basic results of this paper. The peak 
velocity and peak width can thus be obtained by filling in the flow profile 
u(y)  and the steady-state probability profile p ( y )  in the absence of 
boundary absorption. Clearly, the effect of a retentive layer on the 
average peak velocity is merely a reduction of its speed by a factor ( 1  + k) .  
The effect on the peak width is much more intricate. As can be seen from 
Eqs. (14) and (16), K* consists of two terms. The first term is of the form 

1 + Bk + C k 2  
( 1  + k)’ 

K 

where K stands for the effective longitudinal diffusion coefficient in the 
absence of boundary effects ( k  = 0). Not much can be said in general 
about the correction factor (except that it is nonnegative), without 
specifying the flow and probability profile. 

The second term in Eqs. (14) and (16) is a correction term in the case of 
a finite equilibration speed of the absorption-desorption mechanism, i.e., 
finite kdes. This additional contribution to the dispersion is the conse- 
quence of the dispersion on the residence time at each visit of the 
retentive layer. 
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1274 VAN DEN BROECK AND MAES 

It is instructive to compare the above results with the case where 
temporary trapping of the particles can take place at any place in the 
system. This situation has been considered in Ref. 22 (see Eqs. IV.16, 
IV.19, and IV.20 with the notation k = k+/k- and kdes = k-). One then 
has 

and 

Note that the first term in Eq. (19) corresponds to the values B = 2 and 
C = 1 in Eq. (17) and this, independent of flow and probability profile, 
while the second term is identical with the one obtained for boundary 
retentive layers. 

RETENTION AND PEAK WIDTH FOR THE CASE OF A 
CONSTANT FIELD 

As an application of the general result given by Eqs. (15) and (16), we 
consider particles suspended in a parabolic flow ub), y E [O,L] between 
two plane parallel layers at a distance L: 

u ( y )  = 624, ( 1  - +) L 

u, is the average solvent velocity. A constant (gravitational, electrical, or 
centrifugal) field is acting on the particles, inducing an  average setting (or 
sedimentation) speed V,. The probability (or concentration) profile 
attained under the influence of this force is given by a barometric 
distribution: 

where a is the so-called Peclet number: 

a = V,L/D 
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FIELD-FLOW FRACTIONATION 1275 

It describes the relative importance of sedimentation versus diffusion (D 
is the diffusion coefficient of the suspended particles) for the given 
(vertical) dimension L of the system. In chromatography, one often uses 
the basic retention parameter h instead of a (see, e.g., Ref. 7, Eq. 10): 

Suppose now that the upper and lower plate are coated such as to form 
retentive layers for the suspended particles. The peak velocity and peak 
width can now be calculated on the basis of Eqs. (15) and (16) by 
inserting for u(y) and p ( y )  the expression given by Eqs. (20) and (21) 
(moreover, D(y) = D is a constant). 

After extremely lengthy but straightforward calculation, we obtain the 
following results: 

with 

and 

(26) 
U2L2 A(a)  + B(a)k  + C(a)k2  + kU2 K* = ~ 

2100 ( 1  + k ) 3  kdes(1 + w 3  
with 

A ( a )  = 
5040 

(ea - 1)3a6 

- 252)e2" + (-a4 - 6a3 + 21a2 + 30a + 252)e" + (-3a2 

[(3a2 - 30a + 84)e3" + (a4 - 6a3 - 21a2 + 30a 

- 3 0 ~  - 84)] (27) 

[(-a4 + 8a3 + 12a2 - 288a + 768)e2" 1260 
B(a) = ( ea  - 1 ) 2 ~ 6  

+ (6a4 - 216a2 - 1536)e" + (-a4 - 8a3 + 12a2 

+ 288a + 768)] 
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1276 VAN DEN BROECK AND MAES 

[(9a2 - 36a + 36)e3" + (-6a4 + 12a3 + 2 2 5 ~ '  210 
= a6ea(ea - 1) 

- 1404a + 2772)e2" + (6a4 + 12a3 - 225a2 - 1404a 

- 2772)e" - (912' + 36a + 36)] (29) 

Note that, for a small, one has 

~ ( a )  = 1 + - 7 a* - __ 89 a4 

60 7920 

29 113 a4 B(a)  = 9 - - a2 + ~ 

30 2640 

51 79 125 a4 C(a)  = - + - a2 + ~ 

2 24 3168 

Note also that A, B, and C are even functions of a, as was to be expected 
on the basis of the y+-y symmetry of the system. 

From Eqs. (24) and (25), one immediately obtains the familiar result for 
the so-called retention ratio R: 

ii* 6h(coth& - 2h) 
US I + k  

R = - =  (33) 

The peak dispersion is usually expressed in terms of the so-called plate 
height H (see, e.g., Ref. 24): 

with 
I 

6h(coth - 2h) 
= 105(1 + k)2  [.(t) + B(i)k + C ( k ) k 2 ]  (35) 

For the particular case h-t-m (or a+O), one recovers, in view of Eqs. (30)- 
(32), the result of Golay (27): 

1 + 9k + +k2 
105(1 + k)' x(*) = 
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FIELD-FLOW FRACTIONATION 1277 

For k = 0, Eq. (35) reduces to the result first obtained by Giddings et al. 
(6); see also Ref. 23 (note, however, the missprint in Eq. 3.14 of the sign of 
2 1 a2e2"). 

Note that numerical results for x(A) were obtained for several values of 
h in Refs. 18 and 2. Note also that the result for A+co and k-0: 

was given by Westhaver in 1947 (see Eqs. 12 and 32 in Ref. I0 with the 
notation V, = u , ~  and W = L/2). 

RETENTION AND PEAK WIDTH IN A CYLINDRICAL TUBE 

As a second application we consider the case of particles suspended in 
a fluid in Poiseuille flow streaming through a cylindrical tube of radius R .  
The flow profile is then 

u(r)  = 2 4  1 - (32] (37) 

We will only consider the simple case in which no external field is acting 
on the particles. The probability profile is then 

P ( r )  = 2r/R2, r E [OJ] (38) 

The peak velocity and peak width for the case in which the particles can 
be temporarily adsorbed at the tubes surface is obtained from Eqs. (13) 
and (14) by inserting the above given expressions for the flow and 
probability profile (with D(r) = D, a constant). One obtains: 

and 

U2Rz 1 + 6k + 1 l k 2  + kU2 K* = ~ 

480 (1 + k)3  kcled1 + kI3 

These results are in agreement with the results given in Refs. 17-21. 
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1278 VAN DEN BROECK AND MAES 

APPENDIX 

We denote by P(x,i,r)dx the probability that a particle is observed in the 
ith layer between x and x + dr at time t. These probabilities obey the 
following set of conservation equations: 

d,P(x,i , t)  = - -uu,P(x,i , t)  + k:-J(x,i - 1,t) + k;+,P(x,i + 1,t) 
a 

ax 
- ( k t  + k;)P(x,i , t)  

a 
ax 

i = 2, . . . , N - 1 (Ala) 

d,P(x,N,t) = - -uJ'(x,N,t) + ki- lP(x,N - 1,t) - k,P(x,N,t) 

(Alb) 

d,P(x , l , t )  = - -u,P(x,l,t) + k;P(x,2,t)  - k:P(x, l , t )  (Alc) 

The layers i = 2, . . . , N are now given a thickness q, and we introduce 

a 
ax 

the coordinate 

We define: 

y = (i - 2)q 

and 

We t.,en take cXLe limit q+O, N+m, k , 4 m ,  and ~ ~ 4 0 3 ,  i = 2, 
k ; - w  such that the products 
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FIELD-FLOW FRACTIONATION 1279 

( N -  1)q = L 

remain constant. We also write k: = kdes, P(x,l,r) = Pabs(Xf), and set u1 = 0. 
In this limit the set of Eqs. (Al) goes over into a diffusive equation for the 
continuum: 

with 

and in an absorption-desorption rate equation for the retentive layer: 

We have a reflecting boundary condition at y = L: 

while at y = 0 the probability flux of particles leaving the continuum is 
equal to the influx of probability in the retentive layer: 

These two boundary conditions ensure that probability is preserved. 
Performing the above described limit on the results of Eqs. (4) and (5) 
leads us to Eqs. (7) and (8). The derivation of Eqs. (15) and (16) proceeds 
along similar lines. 
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Note Added in Proof 

A n  extension of the results obtained by Golay ( I  7) was given by R .  Aris, 
Proc. R. SOC. L o n d o n ,  -2, 5 3 8  (1959) ,  while results for strong retention 
(k++w) were given earlier b y  J .W.  Westhaver,Ind. Eng.  Chem. ,  g, 126 (1942). 
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