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Retention and Peak Width in Field-Flow Fractionation with
Wall Effects

C. VAN DEN BROECK and D. MAES

LIMBURGS UNIVERSITAIR CENTRUM
B-3610 DIEPENBEEK, BELGIUM

Abstract

Retention and peak width are calculated in field-flow fractionation with
boundary absorption. Results obtained by other authors are covered as particular
cases of our more general treatment.

INTRODUCTION

Field-flow fractionation is a method in which particles are separated in
a nonuniform flow under the influence of a field perpendicular to the
flow (I-9). In most cases, the flow has a parabolic velocity profile. The
field can be produced by gravitational or centrifugal force, by a thermal
or electrical gradient. Under the influence of this field, different types of
particles will move to regions of the flow with different flow velocity,
leading to different peaks in the chromatographic experiment. Apart
from calculating theoretically the positions of these peaks in terms of the
characteristics of the particles (e.g., mobility, radius, charge, etc.), it is also
important to evaluate the peak widths. This allows one to discuss the
separating power of the set-up. The explanation for the width of the peaks
is to be found in the stochastic nature of the particles’ motion: particles,
even though perfectly identical, will not follow the same trajectory.
Although the resulting dispersion is a nuisance to the chromatographic
experiment per se, it reflects properties of the stochastic motion of the
particle and can therefore be used, in combination with appropriate
theoretical results, to measure dynamic properties of this motion (e.g,
diffusion constant, reaction rates, etc.). In this context, we mention the
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work of Westhaver (10), Taylor (/1), Aris ({2), Giddings (/3-15), and
Mysels (16).

In many cases the suspended particles can undergo adsorption in a
thin retentive layer at the boundaries of the tube through which the
carrier fluid is flowing. Results were obtained for this case by Golay (17)
in the absence of a field and for infinitely fast equilibration. Surface
transport and finite equilibration times were considered in Refs. /8 and
19-21, respectively; see also Ref. 22.

The purpose of this paper is to calculate the retention and peak width
in the presence of both boundary adsorption (with finite equilibration
times) and an external field. All the above cited results are covered as
particular cases.

GENERAL RESULT FOR RETENTION AND PEAK WIDTH

The general results, which we will apply to more specific cases in the
next section, can be obtained as a limit of a discrete model which was
discussed by one of the authors (23). In this model (see Fig. 1) one
considers a system of N layers or channels. The layers are planar and
parallel to the x-z plane. In each layeri,i = 1,2, ..., N, fluid is flowing
in the x direction with velocity u,. Particles suspended in the fluid are
carried along with the local fluid velocity. The transition rates for going
from layerito layeri + 1 andi — 1 are denoted by k; and k", respectively
(see Fig. 1). We consider here reflecting boundary conditions, so that
k7 = kj; = 0. Moreover, all other k*’s are assumed to be nonzero, i.e., the
random walk is irreducible.

%N N
+
R ]
p[Kie )
+* -
kil ' ¢ |ki uj —
+
kv y1
\ k; . x
k:l U1 ——

F1G. 1. Kinetic model of field-flow fractionation system.
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The steady-state distribution p* of particles undergoing the above
described random walk over the layers i,i = 1, ..., N, is determined by
the detailed balance conditions k;'p¥ = K;;, p%,, leading to

p* =Nkt ... kiki ... ki (1)

with N a normalization constant.

It can be shown (23) that the distribution of the particles (i.e., the
concentration or probability profile) along the flow direction x is
asymptotic for 700, a Gaussian distribution with average position of its
peak <{x(t)) and peak width {&x’(f)) (or dispersion) given as

tim X2 - g+ @)
lim <[x(t) - <x(t)>]2> = K* (3)
fonco 2t
with
a*=2 upt 4)
and
N-1 [Zl (u; = ﬁ*)p}"]
K*= 3y - (5)

=1 kfpt*

K* is sometimes called the effective longitudinal diffusion coefficient.

We will now take the limit in which the discrete parameter i goes over
into a continuous parameter y € [0,L] except for one or two discrete states
i=1and i =N, which are to model the retentive boundary layers. The
details of this limit are given in the Appendix.

Let us first consider the case in which only the lower state i = 1 is kept
as a discrete state. The flow profile then consists of a continuum u = u(y)
and the velocity 4, = 0 in the boundary layer. The particles occupy a
position y in the continuum with a probability density p*(y) while the
probability for sitting in the retentive boundary layer will be denoted by
P,,.. Obviously, one has

L
[ p* oy + Pu=1 ©
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The random walk over the states i =2, ..., N becomes a diffusive
process (possibly with drift) with diffusion coefficient D(y).

By splitting off the term i = 1 in the summations appearing in Eqs. (4)
and (5) and taking the continuum limit for the remaining layers, we
obtain

L
7+ = [ oy )
y 2
AL wwon e - ) @yt
k*=| d + 8
e DO Ko ®)

where we have written kg, for k7 (k4 is the desorption rate, i.e., k7. is the
average time spent in the retentive layer per visit).

We will now express #* and K* in terms of the stationary probability
profile p(y) in the absence of a retentive layer in order to make the effect of
these layers more apparent. This is possible because the form of the
steady-state probability profile is not modified by the presence of this
layer, i.e., p*(y) is proportional to p(y). Let us call k the ratio of the sample
in the retentive layer to the sample in the mobile continuum phase:

ke B (9
J; p*(y)dy
Since
L
mew=1 (10)

we obtain by combining Egs. (6), (9), and (10):

* = =
D1 Pabs k +1 (11)
and
* _ W)
p*o) = B2 (12)

Inserting these results in Eqs. (7) and (8), we obtain
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L
fo uGwO)dy

A Y (1)
y 2
AL oo -apon -kl ke
ke | a DGO + k)’ * hT R
(14)

Proceeding in the same way for the case where both the upper and
lower states i = 1 and i = N play the role of retentive layers (with identical
properties ki = ky = kg, and k3 = ky_, = k), we obtain

ur = 1+k =
y W
AL wwona v o —mpon -
K*=f dy 0 +
: DRIPGIL + k) kol +
(16)

Equations (13)-(16) are the basic results of this paper. The peak
velocity and peak width can thus be obtained by filling in the flow profile
u(y) and the steady-state probability profile p(y) in the absence of
boundary absorption. Clearly, the effect of a retentive layer on the
average peak velocity is merely a reduction of its speed by a factor (1 + k).
The effect on the peak width is much more intricate. As can be seen from
Eqgs. (14) and (16), K* consists of two terms. The first term is of the form

1+ Bk + Ck?
T ()

where K stands for the effective longitudinal diffusion coefficient in the
absence of boundary effects (k = 0). Not much can be said in general
about the correction factor (except that it is nonnegative), without
specifying the flow and probability profile.

The second term in Egs. (14) and (16) is a correction term in the case of
a finite equilibration speed of the absorption-desorption mechanism, i.e.,
finite k4. This additional contribution to the dispersion is the conse-
quence of the dispersion on the residence time at each visit of the
retentive layer.
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It is instructive to compare the above results with the case where
temporary trapping of the particles can take place at any place in the
system. This situation has been considered in Ref. 22 (see Egs. 1V.16,
V.19, and IV.20 with the notation k = k*/k~ and k4, = k_). One then
has

*
|

;]

% (18)

+

and

K ki?
* =
K =Ty Y+ (19)

Note that the first term in Eq. (19) corresponds to the values B = 2 and
C =1 in Eq. (17) and this, independent of flow and probability profile,
while the second term is identical with the one obtained for boundary
retentive layers.

RETENTION AND PEAK WIDTH FOR THE CASE OF A
CONSTANT FIELD

As an application of the general result given by Eqgs. (15) and (16), we
consider particles suspended in a parabolic flow u(y), y € [0,L] between
two plane parallel layers at a distance L:

u(y) = 6u, % (1 - %) (20)

u, is the average solvent velocity. A constant (gravitational, electrical, or
centrifugal) field is acting on the particles, inducing an average setting (or
sedimentation) speed V. The probability (or concentration) profile
attained under the influence of this force is given by a barometric
distribution:

PG) = H;‘%—Se-w, y € [0.L] 1)

where a is the so-called Peclet number:
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It describes the relative importance of sedimentation versus diffusion (D
is the diffusion coefficient of the suspended particles) for the given
(vertical) dimension L of the system. In chromatography, one often uses
the basic retention parameter A instead of a (see, e.g.,, Ref. 7, Eq. 10):

A=a! (23)

Suppose now that the upper and lower plate are coated such as to form
retentive layers for the suspended particles. The peak velocity and peak
width can now be calculated on the basis of Egs. (15) and (16) by
inserting for u(y) and p(y) the expression given by Egs. (20) and (21)
(moreover, D(y) = D is a constant).

After extremely lengthy but straightforward calculation, we obtain the
following results:

U
“ 1+k 24
with
7= g(coth%' - %)u 25)
and
1LY A(a) + B(a)k + C(a)k? ki?
k=2 + 2
210D (1+k) kes(1 + k)? (26)
with
A(a) = ﬂ—rg [(3a? — 300 + 84)e* + (a* — 60 — 21a® + 30a
(e*— 1)a
—252)e + (—a*— 6a’ + 21a® + 30a + 252)e® + (—3a’
- 30a — 84)] (27)
B(a) = 1260 [(—a® + 8a® + 12a® — 2880 + 768)e™®

(ea —_ 1)2(16
+ (6a* — 21602 — 1536)e® + (—a* — 8a® + 12a?

+ 288a + 768)] (28)
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210
afe(e® — 1)

— 1404a + 2772)e* + (6a* + 12a® — 225a% — 1404a

C(a) = [(9a® = 36a + 36)e* + (—6a* + 12a® + 22502

—2772)e* — (90> + 360 + 36)] (29)
Note that, for a small, one has

7 8

A@ =1+ o'~ =-ca (30)
L9 29, 113

B@)=9-30%* 2640 G
_SL, 79 0, 125,

C(a) +24 * icg (32)

Note also that 4, B, and C are even functions of a, as was to be expected
on the basis of the y—»—y symmetry of the system.

From Egs. (24) and (25), one immediately obtains the familiar result for
the so-called retention ratio R:

)]
_u* 6M(coth3) — 24)
R = Pl T+ & (33)

The peak dispersion is usually expressed in terms of the so-called plate
height H (see, e.g., Ref. 24):

2K* _ kil ugl?
7 kel ¥k D

H = x(M) (34)

with

1
_ 6A(coth 23 — 22) 1 (1) (1) z]
x(A) = 1051 + k)° [A(k>+B 3k +Cls )k (35)
For the particular case A= (or a—0), one recovers, in view of Egs. (30)-
(32), the result of Golay (17):

1+ 9 + $k?

x(®) = 051 ¥ k) (36)
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For k = 0, Eq. (35) reduces to the result first obtained by Giddings et al.
(6); see also Ref. 23 (note, however, the missprint in Eq. 3.14 of the sign of
21a%).

Note that numerical results for x(A) were obtained for several values of
A in Refs. 18 and 2. Note also that the result for A»cc and k—0:

ul’®

H=H0sD

was given by Westhaver in 1947 (see Eqgs. 12 and 32 in Ref. 10 with the
notation V, = u, and W = L/2).

RETENTION AND PEAK WIDTH IN A CYLINDRICAL TUBE

As a second application we consider the case of particles suspended in
a fluid in Poiseuille flow streaming through a cylindrical tube of radius R.

T'he flow profile is then
u(r —2u|1— —Zl 37

We will only consider the simple case in which no external field is acting
on the particles. The probability profile is then

P(r) = 2r/R%,  r € [OR] (38)

The peak velocity and peak width for the case in which the particles can

be temporarily adsorbed at the tubes surface is obtained from Egs. (13)

and (14) by inserting the above given expressions for the flow and

probability profile (with D(r) = D, a constant). One obtains:
7 = U us

1+k 14k

(39

and

_ 'R’ 1+ 6k + 11k2+ ki
48D (1 +k)° kses(1 + k)?

K* (40)

These results are in agreement with the results given in Refs. 17-21.
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APPENDIX

We denote by P(x,it)dx the probability that a particle is observed in the
ith layer between x and x + dx at time r. These probabilities obey the
following set of conservation equations:

0,P(x,it) = — %u,-P(x,i,t) + kPG, — 1,0) + ki P(xi + 1,0)
— (k} + kD)P(x.i 1) i=2 ..., N—1 (Ala)
0,P(x,Nt) = — %uNP(x,N,t) + ky_P(x,N — 1,t) — kyP(x,N,t)
(Alb)
0,P(x,1,t) = — ba;ulP(x,l,t) + k3 P(x,2,t) — kiP(x,1,t) (Alc)
The layers i = 2, ..., N are now given a thickness 7, and we introduce
the coordinate
y=(—-2m (A2)
We define:
P(x.y,t) = ﬂx’(’_r;’z_)’_t) (A3)
and
kf=k te i=3 ...,N—-1
ky=ky— ey (A4)
k; = k2 + €y
We then take the limit -0, N>, k>, and g—»»,i =2, ..., N and
k;— such that the products
kmz = D(y)

em = W(y) (AS)
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kf’ﬂ = kabs
WN-1n=L

remain constant. We also write ki = kg, P(x,11) = P, (x}), and setu, = 0.
In this limit the set of Eqgs. (A1) goes over into a diffusive equation for the
continuum:

0Py) = | = L u) - L v + 2 ) 2Py (A6)
Ox dy dy oy
with
Vo) = 2W) - TN (AT)

and in an absorption-desorption rate equation for the retentive layer:

atPabs(x’t) = kabsp(x,y = OJ) - kdesl)abs(x’t) (A8)

We have a reflecting boundary condition aty = L:

[—V(y) +D(y) %]P(x,y,r) lye = 0 (A9)

while at y = 0 the probability flux of particles leaving the continuum is
equal to the influx of probability in the retentive layer:

-V + o) a—"y]P(x,y,t) oo = kunPOe0.0) = kaoPui(rat)  (A10)

These two boundary conditions ensure that probability is preserved.
Performing the above described limit on the results of Egs. (4) and (5)
leads us to Egs. (7) and (8). The derivation of Eqs. (15) and (16) proceeds
along similar lines.
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Note Added in Proof

An extension of the results obtained by Golay (I7) was given by R. Aris,

Proc. R. Soc. London, A252, 538 (1959), while results for strong retention
(k>+%) were given earlier by J.W. Westhaver, Ind. Eng. Chem., 34,126 (1942).



